Ảnh ngẫu nhiên

Video_13cailuongEnglish.flv IMG_8300.JPG IMG_8299.JPG IMG_8298.JPG IMG_8296.JPG IMG_8297.JPG Happy_new_year.swf LostFile_JPG_333635.jpg LostFile_JPG_348035.jpg FunPhotoBox2131801409odiztx.jpg Co_phai_em_mua_thu_Ha_Noi_Loan.swf Loan_nam_moi_2013.swf Baner_Tet_1.swf Happy_new_year.swf FLASH1_CHAO_MUNG_NAM_HOC_MOI.swf So_do_tu_duy_ve_Dinh_ly_Ta_let.png Thiep_giang_sinh_201117.gif Dot_bien_gen.jpg

Tài nguyên dạy học

Điều tra ý kiến

Bạn nghĩ lập trang WEBSITE riêng để làm gì ?
Lưu giữ tài liệu cá nhân.
Chia sẻ cùng mọi người .
Trao đổi kinh nghiệm .
Nâng cao uy tín bản thân .
Khẳng định mình trong nghề nghiệp.

Tin Thời Tiết

Thủ đô Hà Nội
Ha Noi

Cố đô Huế
Co Do Hue

Tp Hồ Chí Minh
Ho Chi Minh

Tp Ðà Nẵng
Da Nang

TP QUY NHƠN Click for Qui Nhon, Viet Nam Forecast

TỪ ĐIỂN


Tra theo từ điển:



WEBSITE LIÊN KẾT

Hỗ trợ trực tuyến

  • (Trần Hữu Dũng)

Sắp xếp dữ liệu

ĐỊA CHỈ IP CỦA BẠN

IP cua khach truy cap

Chào mừng quý vị đến với Website Thầy Trần Hữu Dũng.

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.

Lam Son TH

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lâm Văn
Ngày gửi: 20h:28' 30-03-2011
Dung lượng: 98.1 KB
Số lượt tải: 8
Số lượt thích: 0 người
xxxĐề thi tuyển sinh vào lớp 10 chuyên toán trường THPT chuyên Lam Sơn Thanh Hoá
================================================

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN
THANH HOÁ NĂM HỌC: 2003-2004

MÔN: THI TOÁN
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 27 tháng 6 năm 2003




Bài 1. (2 điểm)
Cho 
a, Hãy rút gọn biểu thức A
b, Tìm x thoả mãn .
Bài 2. (2 điểm)
Cho phương trình: x2 - 4( m – 1 )x + 4m – 5 = 0. (1)
a, Tìm m để phương trình (1) có hai nghiệm x1, x2 thoả mãn .
b, Tìm m để P =  có giá trị nhỏ nhất.
Bài 3. (2,5 điểm)
Cho tam giác ABC nội tiếp trong đường tròn O và đường kính DE vuông góc với BC. Gọi D1E1 và D2E2 là hình chiếu vuông góc của DE trên AB và AC.
Chứng minh BE1 = E2C = AD1; D1E1 = AC và D2E2 = AB.
Các tứ giác AD1DD2 ; AE1EE2 nội tiếp trong một đường tròn và D1D2 vuông góc với E1E2.
Bài 4. (2 điểm)
Cho hình chopSABC có SA  AB; SA  AC; BA  BC; BA = BC; AC = ; SA = 2a.
a, Chứng minh BC  mp(SAB)
b, Tính diện tích toàn phần của chóp SABC.
Bài 5. (1,5 điểm)
Cho các số thực a1; a2; ….; a2003 thoả mãn: a1 + a2 + …+ a2003 = 1.
Chứng minh: .

--------------------------------------------- Hết ------------------------------------------------




xxxxxxSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN
THANH HOÁ NĂM HỌC: 2004-2005




MÔN: TOÁN (Dành cho học sinh thi vào lớp chuyên Nga - Pháp)
Thời gian: 150 phút (không kể thời gian giao đề)
-----------------------------------------


Bài 1. (2 điểm)
Gọi x1, x2 là các nghiệm của phương trình: 2x2 + 2mx + m2 – 2 = 0.
Với giá trị nào của m thì: .
Tìm giá trị lớn nhất của biểu thức: A = .
Bài 2. (1,5 điểm)
Giải phương trình: (x2 + 3x + 2)(x2 + 7x + 12) = 120.
Bài 3. (2 điểm)
Giải hệ phương trình: .
Bài 4. (3,5 điểm)
Cho M là điểm thay đổi trên đường tròn (O), đường kính AB. Đường tròn (E) tâm E tiếp xúc trong với đường tròn (O) tại M và AB tại N. Đường thẳng MA, MB cắt đường tròn (E) tại các điểm thứ hai C và D khác M.
Chứng minh CD song song với AB.
Gọi giao điểm của MN với đường tròn (O) là K (K khác M). Chứng minh rằng khi M thay đổi thì điểm K cố định và tích KM.KN không đổi.
Gọi giao điểm của CN với KB là C và giao điểm của DN với KA là D. Tìm vị trí của M để chu vi tam giác NCD nhỏ nhất.
Bài 5. (1 điểm)
Tìm giá trị nhỏ nhất của biểu thức: y = .

---------------------------------------------- Hết ------------------------------------------------








xxxxxxx
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN
THANH HOÁ NĂM HỌC: 2004-2005




MÔN: TOÁN (Dành cho học sinh thi vào lớp chuyên Tin)
Thời gian: 150 phút (không kể thời gian giao đề)



Bài 1. (1,0 điểm)
Cho hai phương trình: x2 + ax + 1 = 0 và x2 + bx + 17 = 0. Biết hai phương trình có nghiệm chung và  nhỏ nhấ. Tìm a và b.
Bài 2. (2 điểm)
Giải phương trình: .
Bài 3. (2,5 điểm)
Giải hệ phương trình: .
Tìm nghiệm nguyên của phương trình: x3 + y3 + 6xy = 21.
Bài 4. (2,5 điểm)
Cho tam giác nhọn ABC nội tiếp đường tròn (O) tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng ZIP và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓